

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS EXTENSION 1 YEAR 12 COURSE

Name:

Initial version by H. Lam, April 2020. Last updated November 21, 2021. Various corrections by students and members of the Mathematics Department at Normanhurst Boys High School.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under CC BY 2.0.

Symbols used

- (!) Beware! Heed warning.
- (R) Revision content.

(x1) Mathematics Extension 1 content.

- (x2) Mathematics Extension 2 content.
- (L) Literacy: note new word/phrase.
- (E) Extension content: unlikely to be in the syllabus and therefore not examinable.
- $\mathbbm{R}~$ the set of real numbers
- $\forall \ \, \text{for all} \\$

Syllabus outcomes addressed

ME12-4 uses calculus in the solution of applied problems, including differential equations and volumes of solids of revolution

ME12-6 chooses and uses appropriate technology to solve problems in a range of contexts

Syllabus subtopics

 ${\bf ME-C2}~$ Further Calculus Skills

Gentle reminder

- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *CambridgeMATHS Year 12 Extension 1* (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019) will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

Contents

1	Ord	linary Differential Equations	4
	1.1	Definitions and Rationale	4
		1.1.1 Order	5
		1.1.2 Some simple applications of ODEs	6
	1.2	Solutions to ODEs	7
		1.2.1 Verifying solutions	7
		1.2.2 Types of solutions	8
		1.2.3 Additional exercises	12
2	Firs	st order ODEs	13
	2.1	Linear	13
		2.1.1 Simple integration	14
		2.1.2 Change of subject	15
	2.2	Separable	18
		2.2.1 Additional exercises	22
	2.3	The logistic curve	24
		2.3.1 History and background	24
		2.3.2 Definition	26
		2.3.3 Additional exercises	33
3	Slop	pe fields	35
	3.1	Constructing slope fields	36
	3.2	Interpreting slope fields	40
		3.2.1 Additional exercises	48
4	App	plications and problem solving	52
Re	efere	ences	61

Section 1

Ordinary Differential Equations

Learning Goal(s)

EXAMPLE 1 Knowledge How to recognise

©[®] Skills Recognise **V Understanding** ODEs and non unique solutions to ODEs

${\ensuremath{\overline{\rm V}}}$ By the end of this section am I able to:

- 29.1 Recognise that an equation involving a derivative is called a differential equation
- 29.2 Recognise that solutions to differential equations are functions and that these solutions may not be unique

1.1 **Definitions and Rationale**

Definition 1

An ordinary differential equation (ODE) is an equation that contains terms of y = f(x) and \dots of f(x).

Abbreviated to in high school textbooks.

Important note

Why 'ordinary'? Later in STEM courses at university, *partial differential equations* (PDEs) will be studied. These involve *partial* derivatives, e.g.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

(The PDE above is Laplace's Equation, arises in heat and diffusion)

1.1.1 Order

Definition 2

The **order** of an ODE is the order of the

Laws/Results

The number of arising from an ODE is the same as the ODE's order.

1.1.2 Some simple applications of ODEs

(Haese, Haese, & Humphries, 2017, Section 8C, p.237)

• Derivatives in this topic are written as \dots or \dots , instead of f'(x) or \dot{x} .

NORMANHURST BOYS' HIGH SCHOOL

			 									 															 	:	
				Soluti	ONS TO) OI	DES	3																			9		
:		:					:		:		:			:		:		-			÷			-		:		-	
											:															:			
• • • •		:					:		:		:			:		:		:			:					:		:	
			 																				· · · · i ·				 		
																		÷			•••••••••••••••••••••••••••••••••••••••					••••	 		
	•••••		 				••••	•••••		••••	••••			•••••		••••	••••	•••		•••••	•••••••••••••••••••••••••••••••••••••••		••••			••••	 		
			 									 						÷									 		
;			 									 															 		
;																											 		
																								•					
											-							-											
																		÷											
••••			 									 				••••				• • • • • • •			•••••		•••••		 		
••••		· · · · ·	 				••••	••••			••••	 	• • • • •	•••••		••••	••••	•••		•••••	•••				•••••	••••	 	•••••	
							••••				· · · · ÷					···•		÷			••••••						 :	•••••	
••••		•••••	 				•••••	••••		••••	••••	 		•••••	· · · ·	••••	••••	÷		•••••			· · · ·				 ; :		
																		÷									 		
			 									 				· · · ·	••••	÷		•••••			••••				 		
: ;			 									 															 		
;			 									 															 		
		-												•				-											
											-																		
									÷		÷																		
••••	•••••		 				••••	••••			••••	 		•••••		••••	••••		••••	•••••	••••••		•••••	•••••	•••••	••••	 	•••••	
																										••••	 		
••••	••••		 							· · · · ·		 				•••••	••••	÷		•••••	••••••		••••		•••••	••••	 		
		•••••									· · · · -					••••		÷									 		
	•••••		 								••••	 		•••••			••••	÷		•••••			••••		•••••	···· ;	 		
			 				•••••			••••	••••	 		•••••		•••••		÷					••••	:	•••••	···· :	 	•••••	
;		;	 				····÷					 		· · · · · ÷		· · · · ÷		· · ÷		· · · · .				· · · · ?		· · ·	 ; 	· · · · · {	
			 									 					:						:;				 		
											:			•					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·							
			 				•••••				:			••••••		•••••				• • • • • • •			• • • • • •				 		
			 				•••••		····:		· · · · :					••••		•••		•••••		· · · · · · · · · · · · · · · · · · ·	•••••		•••••		 	•••••	
							•••••		• • •																				
••••			 	NORMAN	HURST	BOVS	; HIC	TH SC	НОС)1.	••••	 				• • • • •	••••	• • ÷•	••••	••••	•••••••		••••		••••	••••	 		

NOF	ξMA.	NHU.	RST	BOA	S' H	IGH	SCH	JOI
								*

 $\mathbf{2}$

3

Example 3

 $[2011\ {\rm Ext}\ 2\ {\rm HSC}\ {\rm Q4}]~$ A mass is attached to a spring and moves in a resistive medium. The motion of the mass satisfies the differential equation

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0$$

where y is the displacement of the mass at time t.

i. Show that if y = f(t) and y = g(t) are both solutions to the differential equation and A and B are constants, then

y = Af(t) + Bg(t)

is also a solution.

ii. A solution of the differential equation is given by $y = e^{kt}$ for some **2** values of k, where k is a constant.

Show that the only possible values of k are k = -1 and k = -2.

iii. A solution of the differential equation is

$$y = Ae^{-2t} + Be^{-t}$$

When t = 0, it is given that y = 0 and $\frac{dy}{dt} = 1$.

Find the values of A and B.

Answer: A = -1, B = 1

NORMANHURST BOYS' HIGH SCHOOL

		 . <u>.</u>												• • • • • • • •			• • • • • •					:		• • • • • • •	• • • • • •			
						•				•												: 						
		 So	LUTIO	NŚ TO	o ODE	s					<u>.</u>					<u>.</u>										11		
						* · ·		:		• •		:					:			:		:						
		:				• • •		:		• • •		:		:			:			÷		:			:		÷	
		 								•							:											
		 :				· · · · · · · · · · · · · · · · · · ·		:		* *	:	:		:			:			:		•••••						
		 										••••	••••	••••			••••								••••			
		 ÷	:				:	· · · · :			1	••••		· · ·			• • • • •			:::::		:	: :	•••••	• • • • • •	· · · · . :	••••	
• • •		 						•••••	••••			••••	• • • • •	• • • • • • •			••••			• • • • •		: : :			••••		••••	
		 										· · · ÷																
		 								•																		
										•																		
												:					:			÷		:					÷	
		-						:				:					:											
										*												•						
		-																		-								
		-								4							:											
		 ÷	••••••••			·	••••••					•••••	••••			4de- 1	••••		(•••••	••••	••••		
		 · · · · ·		· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••		•••••	••••	•••••• •		••••	••••	••••	••••••	4	••••	· · · · (· · · · · ;	(• • • • •				•••••	••••	••••	••••	
	:	 :	· · · · · · · · · · · · · · · · · · ·			: :	•••••• •	· · · · :		:	1	••••		· · · · :		: :	••••			1		:	···· :		• • • • • •		••••	
		 ·						•••••	••••			••••	••••	••••			••••			• • • • •				•••••	••••		••••	
		 																							• • • • •			
		 ÷						•••••	••••			••••	••••	••••	• • • • • •	ļ	••••				••••••••			•••••	••••	••••	••••	
		 ••••••	·····		· · · · · · · · · · · · · · · · · · ·	· ·				: 		••••		••••			••••					: : · · · ·			• • • • •			
		 																				: :						
		 	;;		; ;;	: 	; ;;	· · · · · .		; ;;				 				· · · · ·	: 	 		: : : · · · ·		· · · ·	· · · ; ·			
	· · · · · · · · · · · · · · · · · · ·	 									ļ											: :			· · · · .			
											<u>.</u>					<u>.</u>							<u>.</u>					
		-						÷									-			-								
		-				•		:		* *		:					:		•									
		 				•••••••••••••••••••••••••••••••••••••••						••••					••••					: :			••••			
		 			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				••••••••••••••••••••••••••••••••••••••		•••••				************ *	•••••					: :			••••			
•••		 •••••		•••••••			•••••	••••	•••••	•••••		••••	••••	••••	· · · · · ·	•••••• •	••••	••••		• • • • •	••••••	<u>.</u>		••••	••••	••••	••••	
	•••••	 																				*••••						
		 		•••••••				•••••	••••	····	÷	· · · · · · ·	••••	••••	· · · · ·		••••			• • • • •	· · · · · · · ·			•••••	••••	••••	••••	
		 										• • • •										• • • • • •						
		 ·		•••••••				•••••	•••••			••••	•••••	••••	·	<u>.</u>	••••	••••		•		 :		••••	· · · ? ·	···	••••	
		 -															••••											
• • •		 ÷		•••					••••			••••	••••	••••	·		••••							••••	••••	···	••••	
			• • • • •																									
		 : : :		•••••••••••••••••••••••••••••••••••••••				•••••	••••			· · · · :	•••••	••••	••••••		· · · · :			•	<u>.</u>	:		•••••	· · · · :	···	···-	
		 ÷						· · · · - :						· · · · .		<u>.</u>												
		 																				:			· · · · .	· · · · .		
		 				* · ·				* · ·																		
		 ÷		••••••••									•••••		• • • • • •	ļ.	· · · · .								· · · .			
			· · · · · · · · · · · · · · · · · · ·																									
		 														<u>.</u>									· · · · .			
										•																		
																<u>.</u>				:		: 				<u> </u>		
		-N()	S M A N H	$\cup RS'\Gamma$	BUYS' H	и∓н SCH(1011.							-						-								

1.2.3 Additional exercises

Source Haese et al. (2017, Ex 8C)

- **1.** Verify that:
 - (a) $y = x^4$ is a solution to $\frac{dy}{dx} = 4x^3$

(b)
$$y = 5e^{2x}$$
 is a solution to $\frac{dy}{dx} = 2y$

(c)
$$y = \sqrt{x^2 + 1}$$
 is a solution to $\frac{dy}{dx} = \frac{x}{y}$

(d) $y = -\frac{1}{x}$ is a solution to $\frac{dy}{dx} = y^2$

(e)
$$y = 3e^{\frac{x^2}{2}+x}$$
 is a solution to $\frac{dy}{dx} - y = xy$

(f)
$$y = x^3 + C$$
 is the general solution to $\frac{dy}{dx} = 3x^2$

(g)
$$y = Ce^{-x}$$
 is the general solution to $\frac{dy}{dx} = -y$

(h)
$$y = -\frac{2}{x^2 + C}$$
 is the general solution to $\frac{dy}{dx} = xy^2$

2. Consider the differential equation
$$\frac{dy}{dx} = 4x$$
.

- (a) Show that $y = 2x^2 + C$ is a solution to the differential equation for any constant C.
- (b) Sketch the solution curves for $C = 0, \pm 1, \pm 2$.
- (c) Find the particular solution which passes through $(1, \frac{1}{2})$.
- (d) Find the equation of the tangent to the particular solution at $(1, \frac{1}{2})$.
- **3.** Consider the differential equation $\frac{dy}{dx} = 2x y$.
 - (a) Show that $y = 2x 2 + Ce^{-x}$ is a solution to the differential equation for any constant C.
 - (b) Sketch the solution curves for $C = 0, \pm 1, \pm 2$.
 - (c) Find the particular solution which passes through (0, 1).
 - (d) Find the equation of the tangent to the particular solution at (0, 1).

Answers

2. (c)
$$y = 2x^2 - \frac{3}{2}$$
 (d) $y = 4x - \frac{7}{2}$ **3.** (c) $y = 2x - 2 + 3e^{-x}$ (d) $y = -x + 1$

Section 2

First order ODEs

EXAMPLE TRANSPORT Knowledge First order ODEs Solve

Vunderstanding Features of first order ODEs and exponentials

By the end of this section am I able to:
29.4 Solve simple first-order differential equations

29.5 Recognise the features of a first-order linear differential equation and that exponential growth and decay models are first-order linear differential equations, with known solutions

2.1 Linear

Definition 6

A first order linear ODE take the form

$$y' + f(x)y = g(x)$$

Special cases of the first order linear ODE

- (E) Integrating factor: first year university. Multiply throughout by an integrating factor

$$I = e^{\int f(x) \, dx}$$

and use the product/chain rules:

$$\frac{d}{dx}(Iy) = I\frac{dy}{dx} + f(x)Iy$$

2.1.1 Simple integration

	= Steps	
For	equations of the form $y' = f(x)$	
1.	Evaluate the	
		$y = \int f(x) dx$
2.	Substitute any	where appropriate.

- No further examples are provided here.
- Most of these are reviewing integration techniques from **Topic 27 Further Integration** and other calculus based topics prior to this.

i Further exercises
Ex 13A
● Q1-16

 $[2002 \text{ Ext } 2 \text{ HSC } \mathbf{Q7}]$ The diagram represents a vertical cylindrical water cooler of constant cross-sectional area A. Water drains through a hole at the bottom of the cooler.

From physical principles, it is known that the volume V of water decreases at a rate given by

$$\frac{dV}{dt} = -k\sqrt{y}$$

where k is a positive constant and y is the depth of water.

Initially the cooler is full and it takes T seconds to drain. Thus $y = y_0$ when t = 0, and y = 0 when t = T.

i. Show that
$$\frac{dy}{dt} = -\frac{k}{A}\sqrt{y}$$
. 1

ii. By considering the equation for $\frac{dt}{dy}$, or otherwise, show that

$$y = y_0 \left(1 - \frac{t}{T}\right)^2$$
 for $0 \le t \le T$

iii. Suppose it takes 10 seconds for half the water to drain out. How long does it take to empty the full cooler?

dt

2

Answer: $T = 10\left(2 + \sqrt{2}\right)$ seconds

8		SEPARABLE
2.2	Separable	
Also k	nown as <i>separation of variables</i> .	
	🚍 Steps	
For	equations of the form $y' = f(x)g(y)$	• • • • • • • • • • • • • • • • • • •
1.	Rewrite in differential form:	=f(x)g(y)
2.	Gather $g(y)$ with dy , and $f(x)$ with	h dx.
3.	Evaluate the	on both sides.
•		
4.	Substitute any	where appropriate.
R) The following ODEs from To	ppic 10 - Bates of change Section 2 have
	solutions:	
	• $\frac{dy}{dy} = ky$	• $\frac{dy}{dy} = k(y - q)$
	dx = hy	$\bullet \frac{1}{dx} = h(y - u)$
•	Example 6	
(a)	Solve $y' = -2xe^y$	
(b)	Find the solution curve through ((0,0).
•		Answer: (a) $y = -\ln(x^2 + C)$ (b) $y = -\ln(x^2 + 1)$

	20		· · · · · · · · · · · · · · · · · · ·				· · · ·		· · · · · · · · · · · · · · · · · · ·														· · · ·	S	EPA	RAI	BLE					
						· · ·																										
			Ex	amp	le 8		•		•••••					•••••					~ -				~	•••••								
	[20]	19 V	CE	Spe	cialis	t Ma	the	ma	tics 1	Pap	ber	1 (21]	(4	ma	ark	s) \$	Sol	ve	the	e di	ffe	ren	tia	1						
	equ	ation							dy		2i	e^{2x}																				
	•••••••••••••••••••••••••••••••••••••••								$\frac{d}{dx}$	=	1 +	$-e^{2x}$	 																	· · · · · .		
	give	n tha	at y	(0) =	= π.															Ar	ısw	er:	$\frac{\pi}{2}$ (1	l + e	2x)							
						•							:																			
						· · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••			· · · · · · ·			••••					•••••						•••••								
						•				•																						
						• • • •																		•••••								
						· · · · · · · · · · · · · · · · · · ·				•																						
						· · · · · · · · · · · · · · · · · · ·	•••											•••••						····		•••••	····.;					
			· · · · · · · · · · · · · · · · · · ·																													
						· · · · · · · · · · · · · · · · · · ·																										
						· · · · · · · · · · · ·																		···· ;								
										•																						
			· · · · · ·									• • • • • •	••••					••••						•••••	••••	•••••	•••••	•••••	••••			
																		•••••									•••••					
										•																						
••••••	····•	•••••	•••••••				•••••••						•••••		•••••			• • • • •			•••••			•••••		•••••	•••••	•••••	••••			
						· · · · · · · · · · · · · · · · · · ·																										
						• • • • • • • • • • • • • • • • • • •																										
			· · · · · · · ·				••••					• • • • • •	··· ÷·		•••••			••••						•••••	••••	: : :	•••••	•••••	••••	••••		
										•																						
		••••																•••••						••••		••••		•••••				
										· · · · · ·														···· ;								
						· · · · · · · · · · · · · · · · · · ·																										
						· · · · · · · · · · · · ·							••••					• • • • •						•••••		•••••	•••••		••••			
						•																										
						* * *																										
																		•••••						•••••		: 		•••••				
		· · · · · · · · · · · · · · · · · · ·				• • • • • • • • • • • • • • • • • • •				• • • •																						
						· · · · · · · · · · · · · · · · · · ·				· · · · · · ·								• • • • • •														
						· · · · · · · · · · · · · · · · · · ·		-		•																						
						· · · · · · · · · · · · · · · · · · ·							••••					• • • • •						•••••								
						· · · · · · · · · · · · · · · · · · ·				•																						
																								•••••								
													:					••••	NO	RM A	NHU	вст	BOV	S, II.	CH.	SCP						
		• • • • •				• • • • • • • • • • • • • • • • • • •		· · · · ·		· · · · ·									1101	UVI A		1.01	лоч 	JII	GI							
		: :				:							:	:	:		:						:		:		:		:		:	

NORMANHURST BOYS' HIGH SCHOOL

2.2.1 Additional exercises

Source Haese et al. (2017, Ex 8E).

1. Solve the following separable differential equations.

(a)
$$\frac{dy}{dx} = \frac{x}{y^2}$$
 (d) $\frac{dy}{dx} = 2x\sqrt{y}$ (g) $\frac{dy}{dx} = \frac{y}{x}$

(b)
$$\frac{dy}{dx} = \frac{2x}{e^y}$$
 (e) $\frac{dy}{dx} = y\sin x$ (h) $\frac{dy}{dx} = 3x^2e^y$

(c)
$$\frac{dy}{dx} = 3xy$$
 (f) $\frac{dy}{dx} = -x\sqrt{y+1}$ (i) $\frac{dy}{dx} = \frac{y+2}{x-1}$

2. Solve:

(a)
$$\frac{dy}{dx} = y$$

(b) $\frac{dy}{dx} = \frac{1}{y}$
(c) $\frac{dy}{dx} = y - 4$
(d) $\frac{dP}{dt} = 3\sqrt{P}$
(e) $\frac{dQ}{dt} = 2Q + 3$
(f) $\frac{dQ}{dt} = \frac{1}{2Q + 3}$

3. Solve:

(a)
$$\frac{dy}{dx} = \frac{y}{x^2 + 1}$$
 (d) $(\sqrt{4 - x^2})\frac{dy}{dx} = 1 - y$
(b) $4 + \frac{dy}{dx} = 2y$ (e) $\frac{dy}{dx} = xy^2 - 2y^2$
(c) $(x^2 + 5)\frac{dy}{dx} = \frac{2x}{y^2}$ (f) $y\frac{dy}{dx} = \frac{6x\sqrt{y}}{x^2 + 5}$

4. Find the particular solution to:

(a)
$$\frac{dy}{dx} = \frac{3x}{y^2}$$
 given that $y(0) = 1$
(b) $\frac{dy}{dx} = \frac{\sqrt{y}}{3}$ given that $y(44) = 9$
(c) $\frac{dy}{dx} = y + yx^2$ given that $y(0) = 1$
(d) $\frac{dy}{dx} = \frac{3x}{\cos y}$ given that $y(1) = 0$
(e) $e^y \left(2x^2 + 4x + 1\right) \frac{dy}{dx} = (x+1) \left(e^y + 3\right)$ given that $y(0) = 2$
(f) $x\frac{dy}{dx} = \cos^2 y$ given that $y(e) = \frac{\pi}{4}$

5. (a) Show that
$$\frac{3-x}{x^2-1} = \frac{1}{x-1} - \frac{2}{x+1}$$
.
(b) Find the particular solution to $\frac{dy}{dx} = \frac{3y-xy}{x^2-1}$ given that $y(0) = 1$.
6. (a) Show that $\frac{5x+4}{x^2+x-2} = \frac{2}{x+2} + \frac{3}{x-1}$.
(b) Find the particular solution to $\frac{dy}{dx} = \frac{5xy^2+4y^2}{x^2+x-2}$ given that $y(0) = -\frac{1}{2}$.
7. (a) Show that $\frac{2}{x^2-1} = \frac{1}{x-1} - \frac{1}{x+1}$.
(b) Find the general solution to $\frac{dy}{dx} = \frac{x^2y+y}{x^2-1}$.

Answers

 $\begin{aligned} \mathbf{1.} \text{ (a) } y &= \sqrt[3]{\frac{3}{2}x^2 + C} \text{ (b) } y = \ln \left(x^2 + C\right) \text{ (c) } y = Ae^{\frac{3}{2}x^2} \text{ (d) } y = \left(\frac{x^2}{2} + C\right) \text{ (e) } y = Ae^{-\cos x} \text{ (f) } y = \left(-\frac{1}{4}x^2 + C\right)^2 \text{ (g) } y = Ax \\ \text{ (h) } y &= -\ln \left(C - x^3\right) \text{ (i) } y = A(x - 1) - 2 \text{ 2. (a) } y = Ae^x \text{ (b) } y = \pm \sqrt{2x + C} \text{ (c) } y = Ae^t + 4 \text{ (d) } P = \left(\frac{3}{2}t + C\right)^2 \text{ (e) } Q = Ae^t - \frac{3}{2} \\ \text{ (f) } t = Q^2 + 3Q + C \text{ 3. (a) } y = Ae^{\tan^{-1}x} \text{ (b) } y = Ae^{2x} + 2 \text{ (c) } y = \sqrt[3]{3\ln(x^2 + 5) + C} \text{ (d) } y = 1 + Ae^{-\sin^{-1}\left(\frac{x}{2}\right)} \text{ (e) } y = \frac{1}{-\frac{1}{2}x^2 + 2x + C} \text{ (f) } y = \left(\frac{9}{2}\ln(x^2 + 5) + C\right)^{\frac{2}{3}} \text{ 4. (a) } y = \sqrt[3]{\frac{9}{2}x^2 + 1} \text{ (b) } y = \frac{1}{36}(x - 26)^2 \text{ (c) } y = e^{x + \frac{1}{3}x^3} \text{ (d) } y = \sin^{-1}\left(\frac{3}{2}x^2 - \frac{3}{2}\right) \\ \text{ (e) } y = \ln \left[\sqrt[4]{|2x^2 + 4x + 1|} \left(e^2 + 3\right) - 3\right] \text{ (f) } y = \tan^{-1}\left(\ln|x|\right) \text{ 5. } y = \frac{1-x}{(x+1)^2} \text{ 6. } y = -\frac{1}{\ln\left|\frac{(x+2)^2(x-1)^3}{4}\right| + 2} \text{ 7. } y = Ae^x\left(\frac{x-1}{x+1}\right) \end{aligned}$

2.3 The logistic curve

Knowledge Logistic curve

24

©[®] Skills Solve

V Understanding

Chemistry/Biology/Economics phenomena modelled by the logistic curve

By the end of this section am I able to:
 29.6 Model and solve differential equations including to the logistic equation that will arise in situations where rates are involved, for example in chemistry, biology and economics

2.3.1 History and background

(b) (E) Other information: https://en.wikipedia.org/wiki/Logistic_function

History

Pierre-François Verhulst was born in 1804 in Brussels. He obtained a PhD in mathematics from the University of Ghent in 1825. He was also interested in politics.

While in Italy to contain his tuberculosis, he pleaded without success in favour of a constitution for the Papal States. After the revolution of 1830 and the independence of Belgium, he published a historical essay on an eighteenth century patriot. In 1835 he became professor of mathematics at the newly created Free University in Brussels.

In 1838, Verhulst published a Note on the law of population growth:

We know that the famous Malthus showed the principle that the human population tends to grow in a geometric progression so as to double after a certain period of time, for example every twenty five years. This proposition is beyond dispute if abstraction is made of the increasing difficulty to find food [...]

The virtual increase of the population is therefore limited by the size and the fertility of the country. As a result the population gets closer and closer to a steady state.

Photo and text: Bacaër (2011, p. 35-36)

(`\`)

(B

Watch: https://www.youtube.com/watch?v=C_3VVO1wzpk (E) Other information: https://en.wikipedia.org/wiki/Logistic_function [] Fill in the spaces

• The *logistic curve* is due to (1838)

P(t) =

• Models population growth where population themselves: - Initially, population *increases* rapidly

- Competition for /
- Many applications:
 - Growth of

• Find the derivative w.r.t. t, then rewrite in terms of P:

- Derivative to P and (1-P)
- For a small population, $\frac{dP}{dt} \approx \dots$
- As time increases, $\frac{dP}{dt} \approx \dots$
- Graph of $\frac{dP}{dt}$ against *P*:

Inat	lonal	Fark	IS				1	$P = -\frac{1}{7}$	210	$\frac{000}{e^{-\frac{t}{2}}}$									
wh	ere <i>t</i> i	s the	time	in s	vears	; fre	om to	dav.	+ 0	ie 3									
i	Sho	w tha	t P	satis	fies	the	diffe	rentia	l ea	uati	on							2	
1.	0110	vv 0110		50010		0110			ı cq	aau	、 、								
						$\frac{d}{d}$	$\frac{P}{u} = 1$	$\frac{1}{2}(1)$	<u> </u>	$\frac{P}{000}$	P								
						C	lt	3 (3	000	/								
11.	Wh	at is t	the p	opu	latio	n t	oday?											1	
iii.	Wh	at do	es th	e mo	odel	pre	edict t	that t	he e	even	tual	pop	ulation	n will	beʻ	?		1	•
iv.	Wh	at is t	the a	nnu	al pe	erce	entage	e rate	of g	row	th to	oday	?					1	
					-										-				
												••••		<u>.</u>					
			••••		· · · · · · · · · · · · · · · · · · ·	•••••	• • • • • • • • • • • • • • • • • • • •	: : :		····;		••••	• • • • • • • • • • •				•••••		••••
							•						· · · · · · · · · · · · · · · · · · ·						
						· · · · · ·	(* * * * * (* * * * * * * *												
							· · · · · · · · · · · · · · · · · · ·												
								· · · · · · · · · · · · · · · · · · ·											••••
							• • • • • • • • • • • • • • • • • • •	••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••				•••••• •					• • • • • • • • • • • • • • • • • • • •
						•••••	•										•••••		••••
							• · · · · · · · · · · · · · · · · · · ·								· · · · · ·				
							· · · · · · · · · · · · · · · · · · ·												
		· · · · · ·					* · · · · · · · · · · · · · · · · · · ·								· · · · · · · ·				* • • •
			•••••	· · · · ·		•••••	· · · · · · · · · · · · · · · · · · ·	: 		••••		••••			·				· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·							* · · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·

							•												
						•••••						••••				•••••			
							· · · · · · · · · · · · · · · · · · ·												
							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				:					
1 1	- 1 I						•												
		1		: :				1 1							:			÷ .	

28THE LOGISTIC CURVE Example 12 [2016 2U HSC Q16] Some yabbies are introduced into a small dam. The size of the population, y, of yabbies can be modelled by the function $y = \frac{200}{1 + 19e^{-0.5t}}$ where t is the time in months after the yabbies are introduced into the dam. i. Show that the rate of growth of the size of the population is 2 $1\,900e^{-0.5t}$ $\overline{(1+19e^{-0.5t})^2}$ Find the range of the function y, justifying your answer. ii. $\mathbf{2}$ Show that the rate of growth of the size of the population can be rewritiii. 1 ten as $\frac{y}{400}(200-y)$ Hence, find the size of the population when it is growing at its fastest iv. $\mathbf{2}$ rate. **Answer:** (i) Show (ii) $R = \{y : 10 \le y < 200\}$ (iii) Show (iv) y = 100

			:	:												:						 :						:						
:			:							:		:				:				• •	:				÷		:				÷		• •	
		30																		•					Г	ΉÉ	LO	GIS	FIC	CURY	VE			
	• • • • •		<u></u>	<u></u>		· · · · · ·				<u></u>	<u></u>	<u></u>					<u></u>			<u> </u>		 <u></u>										••••		
			:									••••													••••		••••					••••		
			:										•••••			•				· · · · · · · · · · · · · · · · · · ·		 : 			· · · ÷	· · · · ÷		• • • • • •	· · · · ÷	•••••	· · · ÷·			
			:																															
										:		:				:				•					÷		:		:		÷		• •	
																											:							
•••••	••••	 :	÷	 :		•••••		•••••		••••	· · · · · . :	••••	•••••	• • • • •		·	· · · · · · · · · · · · · · · · · · ·				÷••••	 :		• • • • • •	· · · ÷	· · · :	••••	· · · · :	•••••	· · · · ć. ·	· · · ÷·	••••	· · t · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••
			: : · · · ·																															
			: :			: ;																 : :					:		:					
			:							:		÷				÷				•	:				÷		:		:		÷		•	
										:		:																			-			
			÷)																		 						•••••						
•••••			: :									••••				••••••									••••		••••				· · · :			
	• • • •										•••••		•••••			· ÷·	••••				÷	 				÷	···· ;	••••	· · · ·	· · · ·		· · ·		
			: :																	• • • • • • • • • • • • • • • • • • •													· · · · · · · · · · · · · · · · · · ·	
			:	-																														
																				•														
			2 · · · · ·																															
····; :	••••		: :	; ;	:	····· :		•••••			•••••	•••••	· · · · · :	•••••		· · · · ·	•••••••••••••••••••••••••••••••••••••••			: :	÷••••	 		• • • • •	· · · ÷	••••	····;	•••••	· · · · · : :	· · · · ć · · :	· · · :	••••	•••••••••••••••••••••••••••••••••••••••	
			· · · · · ·													•••••••••••••••••••••••••••••••••••••••				•	÷													
: ;;		: ;	: ;	: ;	; ; ;	: ;;	: : ;			: ;	: :;		: :•••••				: ;			: :	: :	 : :	: :			: ;	;	: ;	: : ;	;	;.			
:			:							÷		:				÷				•	:				÷		÷		-		÷			
:																:											:		:					
: ;			: :			· · · · · ·				•••••		•••••				•••••				•••••	: : :				••••		••••		:				•••••••••••••••••••••••••••••••••••••••	
	• • • •												•••••			• • • •	••••				÷	 			••••	••••	••••	• • • • •	•••••	••••		••••	•••••••••••••••••••••••••••••••••••••••	
: ;;		: 	: ;	: ;		: ;;		;		:			: :;				: 	; 		: :	: :	 : :			;.	;	:	: : ;	: ; ;		;.			
			: 																															
										:						:											:				-			
			· · · · ·																	(* * * * * (* * * * * *		 											•••••••••••	
•••••			:									•••••				• • • • •				•••••	:				••••		••••		:					
•••••	• • • •					•••••	•••••	••••	• • • • •	····	•••••		•••••		• • • • • • • • •	· ÷·	••••				÷	 		• • • • • •	··· ÷	÷	••••	••••{	•••••	· · · · {· ·	÷	••••	•••••••••••••••••••••••••••••••••••••••	
			: : :																	: 														
																•				•														
			:																	•													• •	
•••••	• • • •	· · · · ·	: :) · · · · :				•••••			•••••	•••••	•••••	• • • • •			••••	: :		•••••	:	 · · · · ·		• • • • •	···· :	••••		•••••	•••••	••••	··· :	••••	•••••••••••••••••••••••••••••••••••••••	
••••								• • • •				••••				• • • •				•	÷;				••••		••••						•	
		: ; • • • •		: ;					• • • • • •		;		:							: :	÷					· · · · ?·		•••••		· · · · ÷ · ·		••••	•••	
			:			-																									÷			
			-													-									-		÷							
:;			· · · · ·																						i i		••••				:			
	• • • •												•••••									 			••••	••••			•••••	••••		••••	•••••••••••••••••••••••••••••••••••••••	
																				• • • • • • • • • • • • • • • • • • •													· · • • · · · · · · · · · · · · · · · ·	
:		: 	: :	: 		: :							: 							: :		 : : · · · · ·				· · · ·			;					
				-																· · · · ·														
																						 · · · · · ·												
			•••••																	•••••														
•••••	••••					•••••	•••••	•••••	•••••	••••	•••••	••••	•••••	• • • • •		• …	••••				÷	 			··· ÷	••••	••••	•••••	•••••	•••••	÷	••• {••	•••••••••••••••••••••••••••••••••••••••	•••
			: : · · · ·																	•	÷;										÷			
			: :																			 					;			· · · · · · · ·				
				-																														
																				• •													* *	
		• • • • • •	:													:	••••••		• • • • •	•••••••••••••••••••••••••••••••••••••••		 		• • • • •		••••		• • • • •		•••••		••••		
••••								• • • • •				••••				•									÷		••••							
			: : :	: 																· · · · · · · · · · · · · · · · · · ·		 		•••••	· · · ÷	••••		•••••		•••••		••••		
			:	:							:							:			:	 :			:	:					<u>.</u>			
:			-							:		:				:							NO	RMAN	HUH	RST 1	BOY	S' HI	GH	SCHO	OĽ			
												:								• • •					:									
••••	• • • •		÷			•••••				••••	•••••	••••	•••••	• • • • • •		• …	•••••••					 			••• ÷•	· · · ÷	••••	•••••	· · · · ÷	····	••• ÷•	••••	•••••••••••••••••••••••••••••••••••••••	

[2020 Ext 1 HSC Sample Q14] The population of foxes on an island is modelled by the logistic equation

$$\frac{dy}{dt} = y(1-y)$$

where y is the fraction of the island's carrying capacity reached after t years.

At time t = 0, the population of foxes is estimated to be one-quarter of the island's carrying capacity.

- i. Use the substitution $y = \frac{1}{1-w}$ to transform the logistic equation to $\frac{dw}{dt} = -w.$
- ii. Using the solution of $\frac{dw}{dt} = -w$, find the solution of the logistic equation **2** for y satisfying the initial conditions.
- iii. How long will it take for the fox population to reach three-quarters of **2** the island's carrying capacity?

Answer: $t = \ln 9$ years

[2021 Ext 1 HSC Q14] (4 marks) In a certain country, the population of deer was estimated in 1980 to be 150 000. The population growth is given by the logistic equation $\frac{dP}{dt} = 0.1P\left(\frac{C-P}{C}\right)$ where t is the number of years after 1980 and C is the carrying capacity.

In the year 2000, the population of deer was estimated to be 600 000.

Use the fact that $\frac{C}{P(C-P)} = \frac{1}{P} + \frac{1}{C-P}$ to show that the carrying capacity is approximately 1 130 000.

ig**≡** Further exercises

Ex 13D • Q1-8, 12-15, 17

• (E) Other questions

2.3.3 Additional exercises

Source Haese et al. (2017, Ex 8H).

1. Consider the logistic differential equation
$$\frac{dP}{dt} = 0.2P\left(1 - \frac{P}{200}\right), P(0) = 20$$

- (a) Write P as a function of t.
- (b) Find the value of P when t = 10.
- (c) Discuss the behaviour of P as $t \to \infty$.
- (d) Sketch the graph of P against t.
- 2. The population of koalas on an island is currently 500. Its growth rate is expected to be given by $\frac{dP}{dt} = 0.1P\left(1 \frac{P}{3\,000}\right)$, where t is the time in years from now.
 - (a) Find the expected population after 8 years.
 - (b) Find the expected time taken for the population to increase to 2 000.
 - (c) What is the limiting population size?
 - (d) Sketch the graph of P against t.
- 3. In a small country town, rumours spread very fast. At 8 am on Monday, a rumour begins with 2 people. The number of people N who have heard the rumour grows according to the model

$$\frac{dN}{dt} = 0.8N \left(1 - \frac{N}{600} \right)$$

where t is the time in hours after 8 am.

- (a) Write N as a function of t.
- (b) How many people have heard the rumour by 11 am?
- (c) How many people do you think live in the town?
- (d) At what time would 500 people have heard the rumour?
- 4. There are 10³⁰ molecules involved in a chemical reaction. Initially, 200 of the molecules are "active", and any reaction between an "active" and an "inactive" molecule produces two "active" molecules. The number of "active" molecules grows according to the differential equation

$$\frac{dN}{dt} = kN\left(1 - \frac{N}{10^{30}}\right)$$

where t is the time in seconds.

- (a) Solve the differential equation, and hence write N in terms of k and t.
- (b) Given that 1.5×10^7 molecules were "active" after 10^{-5} seconds, find k.
- (c) At what time would you expect the reaction to be 99% complete?

- 5. 14 European foxes were released in Victoria in 1845 for sport hunting. Spreading rapidly out of control, the fox is now found throughout the mainland, except in the tropical northern regions. In 1900 there were 30 000 foxes in Australia, and today their population is steady at around 95 000.
 - (a) What features of the growth in the fox population suggest that a logistic model is appropriate?
 - (b) Suppose the population of foxes F grows according to the differential equation

$$\frac{dF}{dt} = kF\left(1 - \frac{F}{A}\right)$$

where t is the number of years since 1845.

- i. State the value of A.
- ii. Solve the differential equation, and use the information provided to write F in terms of t.
- (c) Estimate the fox population in 1920.
- (d) Estimate the time at which the fox population was:
 - i. 15 000 ii. 65 000
- (e) Sketch the graph of F against t.
- (f) When was the population growth rate a maximum? How does this appear on the graph of F against t?

Answers

1. (a) $P = \frac{200}{1+9e^{-0.2t}}$ (b) $P \approx 90.2$ (c) $t \to \infty$, $P \to 200$. (d) (c) 23.0 years (d) 3 000 koalas (e) (c) 23.0 years (d) 3.000 koalas (e) (c) 23.0 years (f) 21 people(c) 600 people (d) 5:08 pm 4. (a) $N \approx \frac{1 \times 10^{31}}{1+(5 \times 10^{27})e^{-kt}}$ (b) $k \approx 1.12 \times 10^{6}$ (c) after $\approx 6.09 \times 10^{-5}$ seconds 5. (a) The population of foxes increased quickly at first, but later levelled off to approach a maximum. (b) i. $A = 95\,000$ ii. $F \approx \frac{95\,000}{1+\frac{94\,986}{14}e^{-0.146t}}$ (c) 85 100 foxes (d) i. 1894 ii. 1911 (e) (c) Check via technology (f) In 1905, as it appears as an inflexion on the graph.

Section 3

Direction field

Slope fields

Sketch a graph on a field

Understanding Particular solution

Solution By the end of this section am I able to:

29.3 Sketch the graph of a particular solution given a direction field and initial conditions

Definition 8

The **slope/gradient/direction field** of the tangents to the solution curves represents ________ at many different grid points with short line segments.

Exa	mple	e 16														
The slope fiel	d for	$\frac{dy}{dx}$	= 2	2x is	$^{\mathrm{sh}}$	OWI	ı belo	ow.								
			\	\	\	X	~	$\frac{y}{k}$	/	/	/	/	/	/	/	
			\	\	\	N	~		/	/	/	/	/	/		
			\	١	١	X	`3	+	/	/	/	/	/	/	/	
			\	\	١	Ν	`	}	/	/	/	/	/	/	/	
		/	\	\	\	Ν	$^{\scriptscriptstyle \wedge}2$	+	/	/	/	/	/	/		
			/	\	\	Ν	~	ł	/	/	/	/	/	/		
		1	/	/	\	N	`1	+	/	/	/	/	/			
		1	/	\	\	`	~	ł	/	/	/	/				
	 	\neg^3	/	-2	\	-1	, <u>,</u>		,	1	/	2		3		$\rightarrow x$
			\	\	١	٨	-1	+	/	/	/	/	/	/		
			\	\	\	λ	~	ł	/	/	/	/	/	/	/	
			/	\	\	Χ	<u>~</u> 2	+	/	/	/	/	/	/	/	
			/	\	\	Ν	~	ł	/	/	/	/	/	/		
			/	/	\	N	-3	+	/	/	/	/	/	/		
		1	/	/	\	N	×	ł	1	/	/	/	/			
Sketch a few	parti	icular	$\frac{1}{sc}$	olutio	\hat{ns}	s to	the c	liff	erei	ntial	$l \stackrel{\prime}{\mathrm{eq}}$	uati	lon.	/		

3.1 Constructing slope fields

📃 Steps

- 1. Fill out a table consisting of x, y and values of $\frac{dy}{dx}$ at the corresponding coordinates.
- 2. Plot the gradients of the tangents at the appropriate coordinate.

Example 17

Fill in the following table with the relevant gradients at the points indicated to construct the slope field for $\frac{dy}{dx} = 2x$.

y

[Section 8F] (Haese et al., 2017, p.246) Consider the differential equation $\frac{dy}{dx} = xy$.

- (a) Construct the slope field for the differential equation using the integer grid points for $x, y \in [0, 4]$.
- (b) Find the equation of the particular solution curve which passes through (2, 1).
- (c) Sketch the solution curve from the previous part on the slope field.

	Example 19
[Section	8F] (Haese et al., 2017, p.245) The slope field for $\frac{dy}{dx} = \frac{1 - x^2 - y^2}{y - x + 2}$ is
shown.	
(a) Fi	nd the gradient to the tangent to the solution curve at $(1, 1)$.
(0) 06	the solution curve which passes unough (1, 1).

Answer: $m = -\frac{1}{2}$

(a) Sketch the solution curve of the differential equation corresponding to the condition y(-1) = 1 on the slope field above and, hence, estimate the positive value of x when y = 0.

Give your answer correct to one decimal place.

(b) Solve the differential equation $\frac{dy}{dx} = \frac{-x}{1+y^2}$ with the condition **2** y(-1) = 1. Express your answer in the form $ay^3 + by + cx^2 + d = 0$ where a, b, c and d are integers.

3.2 Interpreting slope fields

Example 21

[2020 Ext 1 HSC Sample Q5]	The slope field for a first order differential equation
	y
	-1 - 0 - 1 - 2 - 3 - 4 - x
Which of the following could be	e the differential equation represented?
(A) $\frac{dy}{dx} = \frac{x}{3y}$ (B) $\frac{dy}{dx} =$	$= -\frac{x}{3y} \qquad (C) \qquad \frac{dy}{dx} = \frac{xy}{3} \qquad (D) \qquad \frac{dy}{dx} = -\frac{xy}{3}$

[2015 VCE Specialist Mathematics Paper 2 Q13] The direction field for a certain differential equation is shown.

The solution curve to the differential equation that passes through the point (2.5, 1.5) could also pass through:

(A)	(0, 2)	(B)	(1, 2)	(C)	(3, 1)	(D)	(3, -0.5)	(E)	(-0.5, 2)
-----	--------	-----	--------	-----	--------	-----	-----------	-----	-----------

x y

[2019 VCE Specialist Mathematics Paper 2 Q9] The differential equation that has the diagram below as its direction field is:

ſ

Example 26

(a) Sketch possible solution curves to the slope field to the differential equation

$$\frac{dy}{dx} = \frac{1}{4}(y-2)(y+2)$$

- (b) From the slope field, identity the constant solutions, that is, the equilibrium solutions.
- (c) Substitute into the DE to show that they are solutions.
- (d) If the horizontal axis is time, describe the behaviour of the solution curves near those constant solutions, and distinguish between them.

Important note

Horizontal solutions are asymptotes

NORMANHURST BOYS' HIGH SCHOOL

3.2.1 Additional exercises

Source (Haese et al., 2017, Ex 8F)

1. Slope fields for two differential equations are plotted below for $x, y \in [-2, 2]$. In each case, use the slope field to graph the solution curve passing through (1, 1).

2. The slope field for the differential equation $\frac{dy}{dx} = \frac{-1 + x^2 + 4y^2}{y - 5x + 10}$ is shown.

· · · · · · · · · · · · · · · · · · ·	1	1	1 1
· / / / / / / / / † 9/ / / /			1 1
· / / / / / / / / / / / / / / / / / / /	1		1 1
1 / / / / / / / / / / / / / / / / / / /	1	1	1 1
· / / / / / / / / / / / / / / / / / / /	1	1	$\lambda = \lambda$
· / / / / / / / / / / / / / / / / / / /	1	1	$\lambda = \lambda$
	1	1	$\lambda = \lambda$
· / / / / / / / / / / / / / / / / / / /	1	\mathbf{X}	X = X
///////////////////////////////////////	\sim	\mathbf{X}	X = X
	$\sim \chi$	\mathbf{X}	X = X
	<u> </u>	~	
	· · · ·		
·	Ň	3	$\langle x \rangle$
		3	
		3	
		3	
		3	
		3	
		3	
		3	
		3	

(a) Find the gradient of the tangent to the solution curve at the origin.

(b) Sketch the particular solution passing through the origin.

3. The slope field for the differential equation $\frac{dy}{dx} = x(y-1)$ is shown.

- (a) Sketch the solution curve which passes through (0, 2).
- (b) Find the equation of the solution curve drawn in (a).

4. Consider the slope field for the differential equation $\frac{dy}{dx} = x^2$.

(b) Find the equation of the particular solution curve which passes through (1, -1). Sketch this curve on your slope field.

Section 4

Logistic curve

Applications and problem solving

Solve

Understanding

Chemistry/Biology/Economics phenomena modelled by the logistic curve

☑ By the end of this section am I able to:

29.6 Model and solve differential equations including to the logistic equation that will arise in situations where rates are involved, for example in chemistry, biology and economics

Example 28

[2006 VCE Specialist Mathematics Paper 2 Q10] A chemical dissolves in a pool at a rate equal to 5% of the amount of undissolved chemical. Initially the amount of undissolved chemical is 8 kg and after t hours x kilograms has dissolved.

The differential equation which models this process is

(B) $\frac{dx}{dt} = \frac{8-x}{20}$ (D) $\frac{dx}{dt} = -\frac{x}{20}$	(A)	$\frac{dx}{dt} =$	$=\frac{x}{20}$	(C)	$\frac{dx}{dt}$	$=\frac{x-8}{20}$	(E)	$\frac{dx}{dt} =$	$= 8 - \frac{x}{20}$	
	(B)	$\frac{dx}{dt} =$	$=\frac{8-x}{20}$	(D)	$\frac{dx}{dt}$	$=-\frac{x}{20}$				

[2007 VCE Specialist Mathematics Paper 2 Q14] The rate at which a type of bird flu spreads throughout a population of 1 000 birds in a certain area is proportional to the product of the number N of infected birds and the number of birds still not infected after t days. Initially two birds in the population are found to be infected.

A differential equation, the solution of which models the number of infected birds after t days, is

(A)
$$\frac{dN}{dt} = k\frac{1\ 000 - N}{1\ 000}$$
 (D) $\frac{dN}{dt} = kN(1\ 000 - (N+2))$
(B) $\frac{dN}{dt} = k(N-2)(1\ 000 - N)$ (E) $\frac{dN}{dt} = k(N+2)(1\ 000 - N)$
(C) $\frac{dN}{dt} = kN(1\ 000 - N)$

Example 30

[2008 VCE Specialist Mathematics Paper 2 Q14] The volume of water $V \text{ m}^3$ in a cylindrical tank when it is filled to a depth of h metres is given by V = 4h. Water flows into the tank at a rate of 0.2 m^3 per minute and leaks out at a rate of $0.01\sqrt{h} \text{ m}^3$ per minute. The differential equation, which when solved would enable h to be expressed in terms of t, is

(A)	$\frac{dn}{dt} =$	= 0.2 - 0.	$01\sqrt{h}$			(D)	$\frac{d}{d}$	$\frac{\iota}{t} =$	$\overline{20}$	40 —	\sqrt{h}	-
(B)	$\frac{dh}{dt} =$	= 4 (0.2 -	- 0.01√	\overline{h}		(E)	$\frac{dl}{d}$	$\frac{h}{t} =$	20		$\frac{400}{\sqrt{h}}$) = 1,
(C)	$\frac{dh}{dt} =$	$=\frac{20-\sqrt{4}}{400}$	$\overline{\underline{h}}$									v re	
											: · · ·		

NORMANHURST BOYS' HIGH SCHOOL

 $[\mathbf{2010}\ \mathbf{VCE}\ \mathbf{Specialist}\ \mathbf{Mathematics}\ \mathbf{Paper}\ \mathbf{1}\ \mathbf{Q7}]$ (x2) Consider the differential equation

$$\frac{d^2y}{dx^2} = \frac{4x}{(1-x^2)^2} - 1 < x < 1$$

for which $\frac{dy}{dx} = 3$ when x = 0, and y = 4 when x = 0.

Given that $\frac{d}{dx}\left(\frac{2}{1-x^2}\right) = \frac{4x}{(1-x^2)^2}$, find the solution of this differential equation. **Answer:** $y = x + \ln\left(\frac{1+x}{1-x}\right) + 4$

NORMANHURST BOYS' HIGH SCHOOL

[2016 VCE Specialist Mathematics Paper 2 Q3] A tank initially has 20 kg of salt dissolved in 100 L of water. Pure water flows into the tank at a rate of 10 L/min. The solution of salt and water, which is kept uniform by stirring, flows out of the tank at a rate of 5 L/min.

If x kilograms is the amount of salt in the tank after t minutes, it can be shown that the differential equation relating x and t is

 $\frac{dx}{dt} + \frac{x}{20+t} = 0$

(a) Solve this differential equation to find x in terms of t. A second tank initially has 15 kg of salt dissolved in 100 L of water. A solution of $\frac{1}{60}$ kg of salt per litre flows into the tank at a rate of 20 L/min. The solution of salt and water, which is kept uniform by stirring, flows out of the tank at a rate of 10 L/min.

(b) If y kilograms is the amount of salt in the tank after t minutes, write down an expression for the concentration, in kg/L, of salt in the second tank at time t.

(c) Show that the differential equation relating y and t is $\frac{dy}{dt} + \frac{y}{10+t} = \frac{1}{3}$.

(d) Verify by differentiation and substitution into the left side that $y = \frac{t^2 + 20t + 900}{6(10 + t)}$ satisfies the **differential equation in part (c)**. Verify that the given solution for y also satisfies the **initial condition**.

(e)

Find when the concentration of salt in the second tank reaches 0.095 kg/L. Give your answer in minutes, correct to two decimal places.

Answer: (a) $x = \frac{400}{20+t}$ (b) $\frac{y}{100+10t}$ (c) Show (d) Verify (e) t = 3.05

3

1

2

3

NESA Reference Sheet – calculus based courses

Trigonometric Functions

 $\sin A = \frac{\text{opp}}{\text{hyp}}, \quad \cos A = \frac{\text{adj}}{\text{hyp}}, \quad \tan A = \frac{\text{opp}}{\text{adj}}$ $A = \frac{1}{2}ab\sin C$ $\frac{\sqrt{2}}{\frac{a}{\sin A}} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $\frac{\sqrt{2}}{45^{\circ}}$ $C^{2} = a^{2} + b^{2} - 2ab\cos C$ $\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$ $l = r\theta$ $A = \frac{1}{2}r^{2}\theta$ $\frac{60^{\circ}}{10}$

Trigonometric identities

$$\sec A = \frac{1}{\cos A}, \ \cos A \neq 0$$
$$\csc A = \frac{1}{\sin A}, \ \sin A \neq 0$$
$$\cot A = \frac{\cos A}{\sin A}, \ \sin A \neq 0$$
$$\cos^2 x + \sin^2 x = 1$$

Compound angles

 $\sin(A + B) = \sin A \cos B + \cos A \sin B$ $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ If $t = \tan \frac{A}{2}$ then $\sin A = \frac{2t}{1 + t^2}$ $\cos A = \frac{1 - t^2}{1 + t^2}$ $\tan A = \frac{2t}{1 - t^2}$ $\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$ $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)]$ $\cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]$ $\sin^2 nx = \frac{1}{2} (1 - \cos 2nx)$ $\cos^2 nx = \frac{1}{2} (1 + \cos 2nx)$

Statistical Analysis

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between –3 and 3

$$E(X) = \mu$$

 $\sqrt{3}$

$$Var(X) = E[(X - \mu)^2] = E(X^2) - \mu^2$$

Probability

$$P(A \cap B) = P(A)P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

Continuous random variables

$$P(X \le x) = \int_{a}^{x} f(x) dx$$
$$P(a < X < b) = \int_{a}^{b} f(x) dx$$

Binomial distribution

$$P(X = r) = {}^{n}C_{r}p^{r}(1-p)^{n-r}$$

$$X \sim \operatorname{Bin}(n, p)$$

$$\Rightarrow P(X = x)$$

$$= {n \choose x}p^{x}(1-p)^{n-x}, x = 0, 1, \dots, n$$

$$E(X) = np$$

$$\operatorname{Var}(X) = np(1-p)$$

- 2 -

Differential Calculus		Integral Calculus					
Function	Derivative	$\int f'(x) [f(x)]^n dx = \frac{1}{2} [f(x)]^{n+1} + c$					
$y = f(x)^n$	$\frac{dy}{dx} = nf'(x)[f(x)]^{n-1}$	$\int f(x)[f(x)] dx = \frac{1}{n+1}[f(x)] + c$ where $n \neq -1$					
y = uv	$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$	$\int f'(x)\sin f(x)dx = -\cos f(x) + c$					
y = g(u) where $u = f(x)$	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	$\int f'(x)\cos f(x)dx = \sin f(x) + c$					
$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$	$\int f'(x)\sec^2 f(x)dx = \tan f(x) + c$					
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$	$\int f'(x)e^{f(x)}dx = e^{f(x)} + c$					
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$	$\int f'(x) = \int f'(x) dx$					
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$	$\int \frac{f(x)}{f(x)} dx = \ln f(x) + c$					
$y = e^{f(x)}$	$\frac{dy}{dx} = f'(x)e^{f(x)}$	$\int f'(x)a^{f(x)}dx = \frac{a^{f(x)}}{\ln a} + c$					
$y = \ln f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{f(x)}$	$\int \frac{f'(x)}{\sqrt{a^2 - [f(x)]^2}} dx = \sin^{-1} \frac{f(x)}{a} + c$					
$y = a^{f(x)}$	$\frac{dy}{dx} = (\ln a)f'(x)a^{f(x)}$	$\int \frac{f'(x)}{dx - \frac{1}{2} \tan^{-1} f(x)} dx = \frac{1}{2} \tan^{-1} \frac{f(x)}{dx} + c$					
$y = \log_a f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{(\ln a)f(x)}$	$\int a^{2} + [f(x)]^{2} a^{2x} - a^{4x} a^{4x} a^{4x} + c^{4x}$					
$y = \sin^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$					
$y = \cos^{-1} f(x)$	$\frac{dy}{dx} = -\frac{f'(x)}{\sqrt{1 - \left[f(x)\right]^2}}$	$\int_{a}^{b} f(x) dx$					
$y = \tan^{-1} f(x)$	$\frac{dy}{dx} = \frac{f'(x)}{1 + [f(x)]^2}$	$\approx \frac{b-a}{2n} \Big\{ f(a) + f(b) + 2 \Big[f(x_1) + \dots + f(x_{n-1}) \Big] \Big\}$ where $a = x_0$ and $b = x_n$					
- 3 -							

Combinatorics

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(x+a)^{n} = x^{n} + \binom{n}{1}x^{n-1}a + \dots + \binom{n}{r}x^{n-r}a^{r} + \dots + a^{n}$$

Vectors

$$\begin{split} \left| \begin{array}{c} \underline{u} \right| &= \left| \begin{array}{c} x\underline{i} + y\underline{j} \right| = \sqrt{x^2 + y^2} \\ \\ \underline{u} \cdot \underline{v} &= \left| \begin{array}{c} \underline{u} \right| \left| \begin{array}{c} \underline{v} \right| \cos \theta = x_1 x_2 + y_1 y_2 \,, \\ \\ \\ \text{where } \begin{array}{c} \underline{u} &= x_1 \underline{i} + y_1 \underline{j} \\ \\ \\ \\ \text{and } \begin{array}{c} \underline{v} &= x_2 \underline{i} + y_2 \underline{j} \end{array} \end{split}$$

 $r_{\tilde{z}} = a + \lambda b_{\tilde{z}}$

Complex Numbers

 $z = a + ib = r(\cos\theta + i\sin\theta)$ $= re^{i\theta}$ $\left[r(\cos\theta + i\sin\theta)\right]^n = r^n(\cos n\theta + i\sin n\theta)$ $= r^n e^{in\theta}$

Mechanics

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$
$$x = a\cos(nt + \alpha) + c$$
$$x = a\sin(nt + \alpha) + c$$
$$\ddot{x} = -n^2(x - c)$$

© 2018 NSW Education Standards Authority

References

- Bacaër, N. (2011). A Short History of Mathematical Population Dynamics. Springer-Verlag London.
- Haese, M., Haese, S., & Humphries, M. (2017). Mathematics for Australia 12 Specialist Mathematics (2nd ed.). Haese Mathematics.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 12 (1st ed.). Cambridge Education.