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Section 1

Ordinary Differential Equations

² Knowledge

How to recognise
3 Skills
Recognise

­ Understanding
ODEs and non unique solutions
to ODEs

� By the end of this section am I able to:
29.1 Recognise that an equation involving a derivative is called a differential equation

29.2 Recognise that solutions to differential equations are functions and that these solutions may not be
unique

� Learning Goal(s)

1.1 Definitions and Rationale

An ordinary differential equation (ODE) is an equation that contains terms of

y = f(x) and . . . . . . . . . . . . . . . . . . . . . . . . . . . . of f(x).

Abbreviated to . . . . . . . . . . . . in high school textbooks.

� Definition 1

Why ‘ordinary’? Later in STEM courses at university, partial differential equations
(PDEs) will be studied. These involve partial derivatives, e.g.

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0

(The PDE above is Laplace’s Equation, arises in heat and diffusion)

V Important note

4



Definitions and Rationale 5

1.1.1 Order

The order of an ODE is the order of the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� Definition 2

The number of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . arising from an
ODE is the same as the ODE’s order.

© Laws/Results

NORMANHURST BOYS’ HIGH SCHOOL



6 Definitions and Rationale

1.1.2 Some simple applications of ODEs

(Haese, Haese, & Humphries, 2017, Section 8C, p.237)

• Derivatives in this topic are written as . . . . . or . . . . . . . , instead of f ′(x) or
b

x.

A falling object X1

. . . . . . . . . . . . . . . . . . . .

• Order: . . . .

Current in an RL circuit X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Order: . . . .

Water leaking from a tank X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Order: . . . .

A parachutist X2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Order: . . . .

Object on a spring X2

. . . . . . . . . . . . . . . . . . . . . . . . . . .

• Order: . . . .

A dog pursuing a cat

x
d2y

dx2
=

√

1 +

(

dy

dx

)2

• Order: . . . .

NORMANHURST BOYS’ HIGH SCHOOL



Solutions to ODEs 7

One notable example not shown above for X1 : the logistic curve. See Sec-
tion 2.3 on page 24.

V Important note

1.2 Solutions to ODEs

A solution to an ODE is an equation of a . . . . . . . . . . . . . . . . . . . . . . or

. . . . . . . . . . . . . . . . . . . . .

� Definition 3

! Equations dealt with during Years 7-12, had x = { value }.

• Definitions 4 and 5 on the next page provide further insight.

V Important note

1.2.1 Verifying solutions

• R See also Topic 10 - Rates of change, Section 2.

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the solution provided as many times as the

. . . . . . . . . . . . . . of the ODE.

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . the required derivatives into the ODE.

• . . . . . . . . . . . . . . any functions of x with y′, y′′ etc.

³ Steps

[2015 VCE Specialist Mathematics Paper 2 Q14] A differential equation that
has y = x sin x as a solution is

(A)
d2y

dx2
+ y = 0

(B) x
d2y

dx2
+ y = 0

(C)
d2y

dx2
+ y = − sin x

(D)
d2y

dx2
+ y = −2 cos x

(E)
d2y

dx2
+ y = 2 cos x

� Example 1

NORMANHURST BOYS’ HIGH SCHOOL
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8 Solutions to ODEs

1.2.2 Types of solutions

L The general solution to a differential equation involves . . . . . . . . . . . . . . . . . . . . . . .
constants.

� Definition 4

• The general solution is a concise way to represent . . . . . . . . . . . . . . . . . . . . . . . many solu-
tions.

• The . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . is one type of general solution.

L The particular solution to a differential equation involves substituting

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . into the general solution.

Often abbreviated to . . . . . . .

A question that involves finding a particular solution, is known as an initial value

problem (IVP).

� Definition 5

[Section 8C] (Haese et al., 2017) Consider the differential equation

dy

dx
− 3y = 3

(a) Show that y = ce3x−1 is a solution to the differential equation for any constant
c.

(b) Sketch the solution curves for c = 0,±1,±2,±3.

(c) Find the particular solution which passes through (0, 2)

(d) Find the equation of the tangent to the particular solution at (0, 2).

Answer: yP = 3e3x − 1, tangent: y = 9x+ 2

� Example 2

NORMANHURST BOYS’ HIGH SCHOOL



Solutions to ODEs 9
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10 Solutions to ODEs

[2011 Ext 2 HSC Q4] A mass is attached to a spring and moves in a resistive
medium. The motion of the mass satisfies the differential equation

d2y

dt2
+ 3

dy

dt
+ 2y = 0

where y is the displacement of the mass at time t.

i. Show that if y = f(t) and y = g(t) are both solutions to the differential
equation and A and B are constants, then

y = Af(t) + Bg(t)

is also a solution.

2

ii. A solution of the differential equation is given by y = ekt for some
values of k, where k is a constant.

Show that the only possible values of k are k = −1 and k = −2.

2

iii. A solution of the differential equation is

y = Ae−2t + Be−t

When t = 0, it is given that y = 0 and
dy

dt
= 1.

Find the values of A and B.

3

Answer: A = −1, B = 1

� Example 3

NORMANHURST BOYS’ HIGH SCHOOL
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12 Solutions to ODEs

1.2.3 Additional exercises

Source Haese et al. (2017, Ex 8C)

1. Verify that:

(a) y = x4 is a solution to
dy

dx
= 4x3

(b) y = 5e2x is a solution to
dy

dx
= 2y

(c) y =
√
x2 + 1 is a solution to

dy

dx
=

x

y

(d) y = −1

x
is a solution to

dy

dx
= y2

(e) y = 3e
x2

2
+x is a solution to

dy

dx
− y = xy

(f) y = x3 + C is the general solution to
dy

dx
= 3x2

(g) y = Ce−x is the general solution to
dy

dx
= −y

(h) y = − 2

x2 + C
is the general solution to

dy

dx
= xy2

2. Consider the differential equation
dy

dx
= 4x.

(a) Show that y = 2x2 +C is a solution to the differential equation for any constant
C.

(b) Sketch the solution curves for C = 0,±1,±2.

(c) Find the particular solution which passes through
(

1, 1
2

)

.

(d) Find the equation of the tangent to the particular solution at
(

1, 1
2

)

.

3. Consider the differential equation
dy

dx
= 2x− y.

(a) Show that y = 2x − 2 + Ce−x is a solution to the differential equation for any
constant C.

(b) Sketch the solution curves for C = 0,±1,±2.

(c) Find the particular solution which passes through (0, 1).

(d) Find the equation of the tangent to the particular solution at (0, 1).

Answers

2. (c) y = 2x2 − 3
2

(d) y = 4x− 7
2

3. (c) y = 2x− 2+3e−x (d) y = −x+ 1

NORMANHURST BOYS’ HIGH SCHOOL



Section 2

First order ODEs

² Knowledge

First order ODEs
3 Skills
Solve

­ Understanding
Features of first order ODEs and
exponentials

� By the end of this section am I able to:
29.4 Solve simple first-order differential equations

29.5 Recognise the features of a first-order linear differential equation and that exponential growth and
decay models are first-order linear differential equations, with known solutions

� Learning Goal(s)

2.1 Linear

A first order linear ODE take the form

y′ + f(x)y = g(x)

� Definition 6

Special cases of the first order linear ODE

• Simple integration: . . . . . . . . . . . . . . . . . . . . See Section 2.1.1 on the following page

• Change of subject: . . . . . . . . . . . . . . . . . . . (non zero constant) and . . . . . . . . . . . . . . . . . . . .
See Section 2.1.2 on page 15.

• E Integrating factor: first year university. Multiply throughout by an integrating
factor

I = e
∫

f(x) dx

and use the product/chain rules:

d

dx
(Iy) = I

dy

dx
+ f(x)Iy

13



14 Linear

2.1.1 Simple integration

For equations of the form y′ = f(x)

1. Evaluate the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y =

∫

f(x) dx

2. Substitute any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . where appropriate.

³ Steps

• No further examples are provided here.

• Most of these are reviewing integration techniques fromTopic 27 - Further Integration
and other calculus based topics prior to this.

Ex 13A

• Q1-16

Î Further exercises

NORMANHURST BOYS’ HIGH SCHOOL
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Linear 15

2.1.2 Change of subject

For equations of the form y′ = g(y)

1. Rewrite in differential form: . . . . . = g(y)

2. Gather y with dy, and change the subject to dx

3. Evaluate the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . on both sides.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Substitute any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . where appropriate.

³ Steps

Solve:
dy

dx
=

1

y2
. Answer: y = 3

√
3x+ C, C ∈ R

� Example 4

NORMANHURST BOYS’ HIGH SCHOOL



16 Linear

[2002 Ext 2 HSC Q7] The diagram represents a vertical cylindrical water cooler
of constant cross-sectional area A. Water drains through a hole at the bottom of the
cooler.

2

dt

y
y0

Draining
water

From physical principles, it is known that the volume V of water decreases at a rate
given by

dV

dt
= −k

√
y

where k is a positive constant and y is the depth of water.

Initially the cooler is full and it takes T seconds to drain. Thus y = y0 when t = 0,
and y = 0 when t = T .

i. Show that
dy

dt
= − k

A

√
y. 1

ii. By considering the equation for
dt

dy
, or otherwise, show that

y = y0

(

1− t

T

)2

for 0 ≤ t ≤ T

4

iii. Suppose it takes 10 seconds for half the water to drain out. How long
does it take to empty the full cooler?

2

Answer: T = 10
(

2 +
√
2
)

seconds

� Example 5

NORMANHURST BOYS’ HIGH SCHOOL
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18 Separable

2.2 Separable

Also known as separation of variables.

For equations of the form y′ = f(x)g(y).

1. Rewrite in differential form: . . . . = f(x)g(y)

2. Gather g(y) with dy, and f(x) with dx.

3. Evaluate the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . on both sides.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Substitute any . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . where appropriate.

³ Steps

R The following ODEs from Topic 10 - Rates of change, Section 2 have

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . solutions:

• dy

dx
= ky • dy

dx
= k(y − a)

V Important note

(a) Solve y′ = −2xey

(b) Find the solution curve through (0, 0).

Answer: (a) y = − ln
(

x2 + C
)

(b) y = − ln
(

x2 + 1
)

� Example 6

NORMANHURST BOYS’ HIGH SCHOOL

https://schoolsnsw.sharepoint.com/:b:/s/N1XHSGBP/mathematics/Eafm_JSbLSZOpSfQtVMThKsBrSoGBpAXmod5E9KqBWdH4A?e=CCBbE5


Separable 19

(a) Solve y′ = −xy2

(b) Find the particular solution given that:

i. y(1) = 1
2

ii. y(2) = 0

Answer: i. y = 2
x2+3

or y = 0 ii. y = 0 is also possible.

� Example 7

Always check whether any constant functions y = k are solutions of the ODE.
V Important note

NORMANHURST BOYS’ HIGH SCHOOL



20 Separable

[2019 VCE Specialist Mathematics Paper 1 Q1] (4 marks) Solve the differential
equation

dy

dx
=

2ye2x

1 + e2x

given that y(0) = π. Answer: π
2

(

1 + e2x
)

� Example 8

NORMANHURST BOYS’ HIGH SCHOOL



Separable 21

[2016 VCE Specialist Mathematics Paper 1 Q9] (5 marks) Solve the differential
equation

(√
2− x2

) dy

dx
=

1

2− y

given that y(1) = 0. Express y as a function of x. Answer: y = 2−
√

4 + π
2
− 2 sin−1

(

x√
2

)

� Example 9

Ex 13C

• Q1-15

Î Further exercises

NORMANHURST BOYS’ HIGH SCHOOL



22 Separable

2.2.1 Additional exercises

Source Haese et al. (2017, Ex 8E).

1. Solve the following separable differential equations.

(a)
dy

dx
=

x

y2

(b)
dy

dx
=

2x

ey

(c)
dy

dx
= 3xy

(d)
dy

dx
= 2x

√
y

(e)
dy

dx
= y sin x

(f)
dy

dx
= −x

√
y + 1

(g)
dy

dx
=

y

x

(h)
dy

dx
= 3x2ey

(i)
dy

dx
=

y + 2

x− 1

2. Solve:

(a)
dy

dx
= y

(b)
dy

dx
=

1

y

(c)
dy

dx
= y − 4

(d)
dP

dt
= 3

√
P

(e)
dQ

dt
= 2Q+ 3

(f)
dQ

dt
=

1

2Q+ 3

3. Solve:

(a)
dy

dx
=

y

x2 + 1

(b) 4 +
dy

dx
= 2y

(c)
(

x2 + 5
) dy

dx
=

2x

y2

(d)
(√

4− x2
) dy

dx
= 1− y

(e)
dy

dx
= xy2 − 2y2

(f) y
dy

dx
=

6x
√
y

x2 + 5

4. Find the particular solution to:

(a)
dy

dx
=

3x

y2
given that y(0) = 1

(b)
dy

dx
=

√
y

3
given that y(44) = 9

(c)
dy

dx
= y + yx2 given that y(0) = 1

(d)
dy

dx
=

3x

cos y
given that y(1) = 0

(e) ey
(

2x2 + 4x+ 1
) dy

dx
= (x+ 1) (ey + 3) given that y(0) = 2

(f) x
dy

dx
= cos2 y given that y(e) = π

4

NORMANHURST BOYS’ HIGH SCHOOL



Separable 23

5. (a) Show that
3− x

x2 − 1
=

1

x− 1
− 2

x+ 1
.

(b) Find the particular solution to
dy

dx
=

3y − xy

x2 − 1
given that y(0) = 1.

6. (a) Show that
5x+ 4

x2 + x− 2
=

2

x+ 2
+

3

x− 1
.

(b) Find the particular solution to
dy

dx
=

5xy2 + 4y2

x2 + x− 2
given that y(0) = −1

2
.

7. (a) Show that
2

x2 − 1
=

1

x− 1
− 1

x+ 1
.

(b) Find the general solution to
dy

dx
=

x2y + y

x2 − 1
.

Answers

1. (a) y = 3
√

3
2
x2 + C (b) y = ln

(

x2 + C
)

(c) y = Ae
3
2
x2

(d) y =
(

x2

2
+ C

)

(e) y = Ae− cos x (f) y =
(

− 1
4
x2 + C

)2
(g) y = Ax

(h) y = − ln
(

C − x3
)

(i) y = A(x−1)−2 2. (a) y = Aex (b) y = ±
√
2x+ C (c) y = Aet+4 (d) P =

(

3
2
t+ C

)2
(e) Q = Aet− 3

2

(f) t = Q2 + 3Q + C 3. (a) y = Aetan
−1 x (b) y = Ae2x + 2 (c) y = 3

√

3 ln (x2 + 5) + C (d) y = 1 + Ae− sin−1( x

2 ) (e) y =

1
− 1

2
x2+2x+C

(f) y =
(

9
2
ln

(

x2 + 5
)

+ C
)

2
3 4. (a) y = 3

√

9
2
x2 + 1 (b) y = 1

36
(x− 26)2 (c) y = ex+

1
3
x3

(d) y = sin−1
(

3
2
x2 − 3

2

)

(e) y = ln
[

4
√

|2x2 + 4x+ 1|
(

e2 + 3
)

− 3
]

(f) y = tan−1 (ln |x|) 5. y = 1−x

(x+1)2
6. y = − 1

ln

∣

∣

∣

∣

(x+2)2(x−1)3

4

∣

∣

∣

∣

+2
7. y = Aex

(

x−1
x+1

)

NORMANHURST BOYS’ HIGH SCHOOL



24 The logistic curve

2.3 The logistic curve

² Knowledge

Logistic curve
3 Skills
Solve

­ Understanding
Chemistry/Biology/Economics
phenomena modelled by the
logistic curve

� By the end of this section am I able to:
29.6 Model and solve differential equations including to the logistic equation that will arise in situations

where rates are involved, for example in chemistry, biology and economics

� Learning Goal(s)

2.3.1 History and background

E Other information: https://en.wikipedia.org/wiki/Logistic function

Pierre-François Verhulst was born in 1804 in
Brussels. He obtained a PhD in mathematics from
the University of Ghent in 1825. He was also inter-
ested in politics.

While in Italy to contain his tuberculosis, he pleaded
without success in favour of a constitution for the Pa-
pal States. After the revolution of 1830 and the inde-
pendence of Belgium, he published a historical essay
on an eighteenth century patriot. In 1835 he became
professor of mathematics at the newly created Free
University in Brussels.

In 1838, Verhulst published a Note on the law of population growth:

We know that the famous Malthus showed the principle that the human
population tends to grow in a geometric progression so as to double
after a certain period of time, for example every twenty five years. This
proposition is beyond dispute if abstraction is made of the increasing
difficulty to find food [...]

The virtual increase of the population is therefore limited by the size and
the fertility of the country. As a result the population gets closer and
closer to a steady state.

Photo and text: Bacaër (2011, p. 35-36)

History

NORMANHURST BOYS’ HIGH SCHOOL
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The logistic curve 25

Watch: https://www.youtube.com/watch?v=C 3VVO1wzpk

E Other information: https://en.wikipedia.org/wiki/Logistic function

• The logistic curve is due to . . . . . . . . . . . . . . . . . . . . . . (1838)

P (t) = . . . . . . . . . . . . . . . . . . . . .

• Models population growth where population . . . . . . . . . . . . . . . . . . . . . themselves:

– Initially, population increases rapidly

– Competition for . . . . . . . . . . . . / . . . . . . . . . . . . . . . / . . . . . . . . . . . . . . . . . . . . . .
pushes the population to a natural . . . . . . . . . . . . . .

• Many applications:

– Growth of . . . . . . . . . . . . . . . . . . . .

– . . . . . . . . . . . . . . . . . . . . . . . . . . .

– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Find the derivative w.r.t. t, then rewrite in terms of P :

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . to P and (1− P )

– For a small population,
dP

dt
≈ . . . . . .

– As time increases,
dP

dt
≈ . .

• Graph of
dP

dt
against P :

L Fill in the spaces

NORMANHURST BOYS’ HIGH SCHOOL
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26 The logistic curve

2.3.2 Definition

The logistic curve takes on the form

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where P and k are constants.

� Definition 7

[1992 3U HSC Q5] In a flock of 1 000 chickens, the number P infected with a
disease at time t years is given by

P =
1 000

1 + ce−1 000t
where c is a constant

(i) Show that, eventually, all the chickens will be infected. 1

(ii) Suppose that when time t = 0, exactly one chicken was infected.
After how many days will 500 chickens be infected?

2

(iii) Show that
dP

dt
= P (1 000− P ). 2

� Example 10
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[2008 Ext 2 HSC Q5] A model for the population, P , of elephants in Serengeti
National Park is

P =
21 000

7 + 3e−
t
3

where t is the time in years from today.

i. Show that P satisfies the differential equation

dP

dt
=

1

3

(

1− P

3 000

)

P

2

ii. What is the population today? 1

iii. What does the model predict that the eventual population will be? 1

iv. What is the annual percentage rate of growth today? 1

� Example 11
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28 The logistic curve

[2016 2U HSC Q16] Some yabbies are introduced into a small dam. The size of
the population, y, of yabbies can be modelled by the function

y =
200

1 + 19e−0.5t

where t is the time in months after the yabbies are introduced into the dam.

i. Show that the rate of growth of the size of the population is

1 900e−0.5t

(1 + 19e−0.5t)2

2

ii. Find the range of the function y, justifying your answer. 2

iii. Show that the rate of growth of the size of the population can be rewrit-
ten as y

400
(200− y)

1

iv. Hence, find the size of the population when it is growing at its fastest
rate.

2

Answer: (i) Show (ii) R = {y : 10 ≤ y < 200} (iii) Show (iv) y = 100

� Example 12

NORMANHURST BOYS’ HIGH SCHOOL



The logistic curve 29

[2010 Ext 2 HSC Q5]
(b) X2 Show that

∫

dy

y(1− y)
= ln

(

y

1− y

)

+ c

for some constant c, where 0 < y < 1.

2

(c) A TV channel has estimated that if it spends $x on advertising a
particular program it will attract a proportion y(x) of the potential
audience for the program, where

dy

dx
= ay(1− y)

and a > 0 is a given constant.

i. Explain why
dy

dx
has its maximum value when y =

1

2
. 1

ii. Using part (b), or otherwise, deduce that

y(x) =
1

ke−ax + 1

for some constant k > 0

3

iii. The TV channel knows that if it spends no money on advertising
the program then the audience will be one-tenth of the potential
audience.

Find the value of the constant k referred to in part (c)ii.

1

iv. What feature of the graph y =
1

ke−ax + 1
is determined by the

result in part (c)i?

1

v. Sketch the graph y =
1

ke−ax + 1
. 1

� Example 13
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[2020 Ext 1 HSC Sample Q14] The population of foxes on an island is modelled
by the logistic equation

dy

dt
= y(1− y)

where y is the fraction of the island’s carrying capacity reached after t years.

At time t = 0, the population of foxes is estimated to be one-quarter of the island’s
carrying capacity.

i. Use the substitution y =
1

1− w
to transform the logistic equation to

dw

dt
= −w.

2

ii. Using the solution of
dw

dt
= −w, find the solution of the logistic equation

for y satisfying the initial conditions.

2

iii. How long will it take for the fox population to reach three-quarters of
the island’s carrying capacity?

2

Answer: t = ln 9 years

� Example 14
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32 The logistic curve

[2021 Ext 1 HSC Q14] (4 marks) In a certain country, the population of deer was
estimated in 1980 to be 150 000. The population growth is given by the logistic

equation
dP

dt
= 0.1P

(

C − P

C

)

where t is the number of years after 1980 and C is

the carrying capacity.

In the year 2000, the population of deer was estimated to be 600 000.

Use the fact that
C

P (C − P )
=

1

P
+

1

C − P
to show that the carrying capacity is

approximately 1 130 000.

� Example 15

Ex 13D

• Q1-8, 12-15, 17 • E Other questions

Î Further exercises
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2.3.3 Additional exercises

Source Haese et al. (2017, Ex 8H).

1. Consider the logistic differential equation
dP

dt
= 0.2P

(

1− P

200

)

, P (0) = 20.

(a) Write P as a function of t.

(b) Find the value of P when t = 10.

(c) Discuss the behaviour of P as t → ∞.

(d) Sketch the graph of P against t.

2. The population of koalas on an island is currently 500. Its growth rate is expected to

be given by
dP

dt
= 0.1P

(

1− P

3 000

)

, where t is the time in years from now.

(a) Find the expected population after 8 years.

(b) Find the expected time taken for the population to increase to 2 000.

(c) What is the limiting population size?

(d) Sketch the graph of P against t.

3. In a small country town, rumours spread very fast. At 8 am on Monday, a rumour
begins with 2 people. The number of people N who have heard the rumour grows
according to the model

dN

dt
= 0.8N

(

1− N

600

)

where t is the time in hours after 8 am.

(a) Write N as a function of t.

(b) How many people have heard the rumour by 11 am?

(c) How many people do you think live in the town?

(d) At what time would 500 people have heard the rumour?

4. There are 1030 molecules involved in a chemical reaction. Initially, 200 of the molecules
are “active”, and any reaction between an “active” and an “inactive” molecule produces
two “active” molecules. The nunber of “active” molecules grows according to the
differential equation

dN

dt
= kN

(

1− N

1030

)

where t is the time in seconds.

(a) Solve the differential equation, and hence write N in terms of k and t.

(b) Given that 1.5× 107 molecules were “active” after 10−5 seconds, find k.

(c) At what time would you expect the reaction to be 99% complete?
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34 The logistic curve

5. 14 European foxes were released in Victoria in 1845 for sport hunting. Spreading
rapidly out of control, the fox is now found throughout the mainland, except in the
tropical northern regions. In 1900 there were 30 000 foxes in Australia, and today their
population is steady at around 95 000.

(a) What features of the growth in the fox population suggest that a logistic model
is appropriate?

(b) Suppose the population of foxes F grows according to the differential equation

dF

dt
= kF

(

1− F

A

)

where t is the number of years since 1845.

i. State the value of A.

ii. Solve the differential equation, and use the information provided to write
F in terms of t.

(c) Estimate the fox population in 1920.

(d) Estimate the time at which the fox population was:

i. 15 000 ii. 65 000

(e) Sketch the graph of F against t.

(f) When was the population growth rate a maximum? How does this appear on
the graph of F against t?

Answers

1. (a) P = 200
1+9e−0.2t (b) P ≈ 90.2 (c) t → ∞, P → 200. (d) Check via technology. 2. (a) P = 3 000

1+5e−0.1t (b) 924

(c) 23.0 years (d) 3 000 koalas (e) Check via technology. 3. (a) N = 600
1+299e−0.8t (b) 21 people (c) 600 people (d) 5:08 pm

4. (a) N ≈ 1×1031

1+(5×1027)e−kt
(b) k ≈ 1.12× 106 (c) after ≈ 6.09× 10−5 seconds 5. (a) The population of foxes increased quickly

at first, but later levelled off to approach a maximum. (b) i. A = 95 000 ii. F ≈ 95 000
1+ 94 986

14
e−0.146t (c) 85 100 foxes (d) i. 1894

ii. 1911 (e) Check via technology (f) In 1905, as it appears as an inflexion on the graph.
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Section 3

Slope fields

² Knowledge

Direction field
3 Skills
Sketch a graph on a field

­ Understanding
Particular solution

� By the end of this section am I able to:
29.3 Sketch the graph of a particular solution given a direction field and initial conditions

� Learning Goal(s)

The slope/gradient/direction field of the tangents to the solution curves repre-

sents . . . . . . . . . . . . . . . . . . . . . . . . at many different grid points with short line segments.

� Definition 8

The slope field for
dy

dx
= 2x is shown below.

−1

−2

−3

1

2

3

1 2 3−1−2−3
x

y

Sketch a few particular solutions to the differential equation.

� Example 16



36 Constructing slope fields

3.1 Constructing slope fields

1. Fill out a table consisting of x, y and values of
dy

dx
at the corresponding coor-

dinates.

2. Plot the gradients of the tangents at the appropriate coordinate.

³ Steps

Fill in the following table with the relevant gradients at the points indicated to

construct the slope field for
dy

dx
= 2x.

y/x −4 −3 −2 −1 0 1 2 3 4
4
3
2
1
0
−1
−2
−3
−4

−1

−2

−3

1

2

3

1 2 3−1−2−3
x

y

� Example 17
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Constructing slope fields 37

[Section 8F] (Haese et al., 2017, p.246) Consider the differential equation
dy

dx
= xy.

(a) Construct the slope field for the differential equation using the integer grid
points for x, y ∈ [0, 4].

(b) Find the equation of the particular solution curve which passes through (2, 1).

(c) Sketch the solution curve from the previous part on the slope field.

y/x 0 1 2 3 4
4
3
2
1
0

1

2

3

1 2 3
x

y

� Example 18
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38 Constructing slope fields

[Section 8F] (Haese et al., 2017, p.245) The slope field for
dy

dx
=

1− x2 − y2

y − x+ 2
is

shown.

(a) Find the gradient to the tangent to the solution curve at (1, 1).

(b) Sketch the solution curve which passes through (1, 1).

Answer: m = − 1
2

� Example 19
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Constructing slope fields 39

[2017 VCE Specialist Mathematics Paper 1 Q8] A slope field representing the
differential equation

dy

dx
=

−x

1 + y2

is shown below.
y

x
1O 2–2 –1

2

–1

–2

1

(a) Sketch the solution curve of the differential equation corresponding to
the condition y(−1) = 1 on the slope field above and, hence, estimate
the positive value of x when y = 0.

Give your answer correct to one decimal place.

2

(b) Solve the differential equation
dy

dx
=

−x

1 + y2
with the condition

y(−1) = 1. Express your answer in the form ay3 + by + cx2 + d = 0
where a, b, c and d are integers.

2

� Example 20
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3.2 Interpreting slope fields

[2020 Ext 1 HSC Sample Q5] The slope field for a first order differential equation
is shown.

3

2

1

–1

–4 4 x

y

–3 3–2 2–1 1O

–2

–3

Which of the following could be the differential equation represented?

(A)
dy

dx
=

x

3y
(B)

dy

dx
= − x

3y
(C)

dy

dx
=

xy

3
(D)

dy

dx
= −xy

3

� Example 21
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Interpreting slope fields 41

[2014 VCE Specialist Mathematics Paper 2 Q14] The differential equation that
is best represented by the above direction field is

y

x

(A)
dy

dx
=

1

x− y

(B)
dy

dx
= y − x

(C)
dy

dx
=

1

y − x

(D)
dy

dx
= x− y

(E)
dy

dx
=

1

y + x

� Example 22
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42 Interpreting slope fields

[2015 VCE Specialist Mathematics Paper 2 Q13] The direction field for a certain
differential equation is shown.

y

x
–3

–1

–2

1

2

–2 –1 O 1 2 3

The solution curve to the differential equation that passes through the point (2.5, 1.5)
could also pass through:

(A) (0, 2) (B) (1, 2) (C) (3, 1) (D) (3,−0.5) (E) (−0.5, 2)

� Example 23
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[2018 VCE Specialist Mathematics Paper 2 Q10] The differential equation that
best represents the direction field below is:

y

x
O

–2

–8

–6

–4

–2

2

4

6

8

2 4 6 8–4–6–8

x y

x y2

x y

x y2

x y

a i j jm

a

(A)
dy

dx
=

2x+ y

y − 2x

(B)
dy

dx
=

x+ 2y

2x− y

(C)
dy

dx
=

2x− y

x+ 2y

(D)
dy

dx
=

x− 2y

y − 2x

(E)
dy

dx
=

2x+ y

2y − x

� Example 24
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44 Interpreting slope fields

[2019 VCE Specialist Mathematics Paper 2 Q9] The differential equation that
has the diagram below as its direction field is:

y

x
O

2

8

6

4

2

2

4

6

8

2 4 6 8468

(A)
dy

dx
= sin(y − x)

(B)
dy

dx
= cos(y − x)

(C)
dy

dx
= sin(x− y)

(D)
dy

dx
=

1

cos(y − x)

(E)
dy

dx
=

1

sin(y − x)

� Example 25
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Interpreting slope fields 45

(a) Sketch possible solution curves to the slope field to the differential equation

dy

dx
=

1

4
(y − 2)(y + 2)

(b) From the slope field, identity the constant solutions, that is, the equilibrium
solutions.

(c) Substitute into the DE to show that they are solutions.

(d) If the horizontal axis is time, describe the behaviour of the solution curves near
those constant solutions, and distinguish between them.

� Example 26

Horizontal solutions are asymptotes
V Important note
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[2020 Ext 1 HSC Q7] Which of the following best represents the direction field for

the differential equation
dy

dx
= − x

4y
?

(A)

1 2−1−2

−1

−2

1

2

x

y

(B)

1 2−1−2

−1

−2

1

2

x

y

(C)

1 2−1−2

−1

−2

1

2

x

y

(D)

1 2−1−2

−1

−2

1

2

x

y

� Example 27

Ex 13B

• Q5-15

Ex 13D

• Q10, 11, 15, 16

Î Further exercises
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48 Interpreting slope fields

3.2.1 Additional exercises

Source (Haese et al., 2017, Ex 8F)

1. Slope fields for two differential equations are plotted below for x, y ∈ [−2, 2]. In each
case, use the slope field to graph the solution curve passing through (1, 1).

(a)

a b

¡

¡

x

y

2

2

-2

-2
(b)

¡

¡

2

2

-2

-2

y

x

2. The slope field for the differential equation
dy

dx
=

−1 + x2 + 4y2

y − 5x+ 10
is shown.

¡

¡

1 3

1

2

-1

-2

y

x
-1-3

(a) Find the gradient of the tangent to the solution curve at the origin.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Sketch the particular solution passing through the origin.
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3. The slope field for the differential equation
dy

dx
= x(y − 1) is shown.

¡

¡

x

y

2 4-2-4

2

4

-2

-4

(a) Sketch the solution curve which passes through (0, 2).

(b) Find the equation of the solution curve drawn in (a).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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50 Interpreting slope fields

4. Consider the slope field for the differential equation
dy

dx
= x2.

¡

¡

y

x2-2

-2

2

(a) Show that a general solution for the differential equation is y =
1

3
x3 + C.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Sketch the particular solution curve for

i. C = 1 ii. C = 2
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5. (a) Construct the slope field for the differential equation
dy

dx
=

1

2
xy using integer

grid points x, y ∈ [−2, 2].

−1

1

2

1 2−1
x

y

(b) Find the equation of the particular solution curve which passes through (1,−1).
Sketch this curve on your slope field.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Section 4

Applications and problem solving

² Knowledge

Logistic curve
3 Skills
Solve

­ Understanding
Chemistry/Biology/Economics
phenomena modelled by the
logistic curve

� By the end of this section am I able to:
29.6 Model and solve differential equations including to the logistic equation that will arise in situations

where rates are involved, for example in chemistry, biology and economics

� Learning Goal(s)

[2006 VCE Specialist Mathematics Paper 2 Q10] A chemical dissolves in
a pool at a rate equal to 5% of the amount of undissolved chemical. Initially
the amount of undissolved chemical is 8 kg and after t hours x kilograms has dissolved.

The differential equation which models this process is

(A)
dx

dt
=

x

20

(B)
dx

dt
=

8− x

20

(C)
dx

dt
=

x− 8

20

(D)
dx

dt
= − x

20

(E)
dx

dt
= 8− x

20

� Example 28

52



53

[2007 VCE Specialist Mathematics Paper 2 Q14] The rate at which a type of
bird flu spreads throughout a population of 1 000 birds in a certain area is propor-
tional to the product of the number N of infected birds and the number of birds still
not infected after t days. Initially two birds in the population are found to be infected.

A differential equation, the solution of which models the number of infected birds
after t days, is

(A)
dN

dt
= k

1 000−N

1 000

(B)
dN

dt
= k(N − 2)(1 000−N)

(C)
dN

dt
= kN(1 000−N)

(D)
dN

dt
= kN(1 000− (N + 2))

(E)
dN

dt
= k(N + 2)(1 000−N)

� Example 29

[2008 VCE Specialist Mathematics Paper 2 Q14] The volume of water V m3

in a cylindrical tank when it is filled to a depth of h metres is given by V = 4h.
Water flows into the tank at a rate of 0.2 m3 per minute and leaks out at a rate of
0.01

√
h m3 per minute. The differential equation, which when solved would enable

h to be expressed in terms of t, is

(A)
dh

dt
= 0.2− 0.01

√
h

(B)
dh

dt
= 4

(

0.2− 0.01
√
h
)

(C)
dh

dt
=

20−
√
h

400

(D)
dh

dt
=

40

20−
√
h

(E)
dh

dt
= 20− 400√

h
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[2010 VCE Specialist Mathematics Paper 1 Q7] X2 Consider the differential
equation

d2y

dx2
=

4x

(1− x2)2
− 1 < x < 1

for which
dy

dx
= 3 when x = 0, and y = 4 when x = 0.

Given that
d

dx

(

2

1− x2

)

=
4x

(1− x2)2
, find the solution of this differential equation.

Answer: y = x+ ln
(

1+x
1−x

)

+ 4
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[2016 VCE Specialist Mathematics Paper 2 Q3] A tank initially has 20 kg of
salt dissolved in 100 L of water. Pure water flows into the tank at a rate of 10 L/min.
The solution of salt and water, which is kept uniform by stirring, flows out of the
tank at a rate of 5 L/min.

If x kilograms is the amount of salt in the tank after t minutes, it can be shown that
the differential equation relating x and t is

dx

dt
+

x

20 + t
= 0

(a) Solve this differential equation to find x in terms of t. 3
A second tank initially has 15 kg of salt dissolved in 100 L of water. A

solution of
1

60
kg of salt per litre flows into the tank at a rate of 20 L/min.

The solution of salt and water, which is kept uniform by stirring, flows out
of the tank at a rate of 10 L/min.

(b) If y kilograms is the amount of salt in the tank after t minutes, write
down an expression for the concentration, in kg/L, of salt in the second
tank at time t.

1

(c) Show that the differential equation relating y and t is
dy

dt
+

y

10 + t
=

1

3
. 2

(d) Verify by differentiation and substitution into the left side that

y =
t2 + 20t+ 900

6(10 + t)
satisfies the differential equation in part (c).

Verify that the given solution for y also satisfies the initial condi-
tion.

3

(e) Find when the concentration of salt in the second tank reaches
0.095 kg/L. Give your answer in minutes, correct to two decimal places.

2

Answer: (a) x = 400
20+t

(b) y

100+10t
(c) Show (d) Verify (e) t = 3.05
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Ex 13E

• Q1-13

Î Further exercises
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